6,086 research outputs found

    Cooperative Interference Control for Spectrum Sharing in OFDMA Cellular Systems

    Full text link
    This paper studies cooperative schemes for the inter-cell interference control in orthogonal-frequency-divisionmultiple- access (OFDMA) cellular systems. The downlink transmission in a simplified two-cell system is examined, where both cells simultaneously access the same frequency band using OFDMA. The joint power and subcarrier allocation over the two cells is investigated for maximizing their sum throughput with both centralized and decentralized implementations. Particularly, the decentralized allocation is achieved via a new cooperative interference control approach, whereby the two cells independently implement resource allocation to maximize individual throughput in an iterative manner, subject to a set of mutual interference power constraints. Simulation results show that the proposed decentralized resource allocation schemes achieve the system throughput close to that by the centralized scheme, and provide substantial throughput gains over existing schemes.Comment: To appear in ICC201

    Exploiting Interference Alignment in Multi-Cell Cooperative OFDMA Resource Allocation

    Full text link
    This paper studies interference alignment (IA) based multi-cell cooperative resource allocation for the downlink OFDMA with universal frequency reuse. Unlike the traditional scheme that treats subcarriers as separate dimensions for resource allocation, the IA technique is utilized to enable frequency-domain precoding over parallel subcarriers. In this paper, the joint optimization of frequency-domain precoding via IA, subcarrier user selection and power allocation is investigated for a cooperative three-cell OFDMA system to maximize the downlink throughput. Numerical results for a simplified symmetric channel setup reveal that the IA-based scheme achieves notable throughput gains over the traditional scheme only when the inter-cell interference link has a comparable strength as the direct link, and the receiver SNR is sufficiently large. Motivated by this observation, a practical hybrid scheme is proposed for cellular systems with heterogenous channel conditions, where the total spectrum is divided into two subbands, over which the IAbased scheme and the traditional scheme are applied for resource allocation to users located in the cell-intersection region and cellnon- intersection region, respectively. It is shown that this hybrid resource allocation scheme flexibly exploits the downlink IA gains for OFDMA-based cellular systems.Comment: 5 pages, 5 figures, GC2011 conferenc

    A multi-phenotypic cancer model with cell plasticity

    Full text link
    The conventional cancer stem cell (CSC) theory indicates a hierarchy of CSCs and non-stem cancer cells (NSCCs), that is, CSCs can differentiate into NSCCs but not vice versa. However, an alternative paradigm of CSC theory with reversible cell plasticity among cancer cells has received much attention very recently. Here we present a generalized multi-phenotypic cancer model by integrating cell plasticity with the conventional hierarchical structure of cancer cells. We prove that under very weak assumption, the nonlinear dynamics of multi-phenotypic proportions in our model has only one stable steady state and no stable limit cycle. This result theoretically explains the phenotypic equilibrium phenomena reported in various cancer cell lines. Furthermore, according to the transient analysis of our model, it is found that cancer cell plasticity plays an essential role in maintaining the phenotypic diversity in cancer especially during the transient dynamics. Two biological examples with experimental data show that the phenotypic conversions from NCSSs to CSCs greatly contribute to the transient growth of CSCs proportion shortly after the drastic reduction of it. In particular, an interesting overshooting phenomenon of CSCs proportion arises in three-phenotypic example. Our work may pave the way for modeling and analyzing the multi-phenotypic cell population dynamics with cell plasticity.Comment: 29 pages,6 figure

    MICROMANIPULATOR-RESONATOR SYSTEM FOR SELECTIVE WEIGHING OF INDIVIDUAL MICROPARTICLES

    Get PDF
    Over the past decade, MEMS-based cantilever sensors have been widely used in the detection of biomolecules, environmental pollutants, chemicals and pathogens. Cantilever-based sensors rely on attachment of target entities on their surface. The attachment causes either change in surface stress or resonance frequency of the cantilever, which is detected using various schemes that range from optical to piezoelectric. The majority of these sensors rely on probabilistic attachment of multiple target entities to the sensor surface. This introduces uncertainties since the location of the adsorbed target entity can modify the signal generated by the sensor. In addition, it does not allow the measurement of individually selected target entities. The goal of this dissertation is to exploit the cantilever-based sensors\u27 mass sensing capability to develop a supermarket weight scale for the micro world: a scheme that can enable the user to pick an individual target entity and weigh only that particular entity by precisely positioning it on a micro- weight scale
    corecore